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Abstract

An estimate of the lower-bound on signal-to-noise ratio (SNR) of the nth-order hyperbolic time–frequency kernel is

given. The effects of kernel parameters such as b, t, n and a on the SNR are discussed. In particular, the direct relationship

between the SNR and auto-term slope a is studied in detail. Conditions under which the lower-bound on SNR is obtained

are derived. Preliminary observations on a transfer function model with the auto-term slope a and b as inputs, and lower-

bound on SNR as output are given. Possible further work is outlined.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Some properties of the hyperbolic time–frequency kernel was reported recently [1] to show its effectiveness
in suppressing cross terms, supporting auto-terms and its superior noise robustness compared to the popular
Choi–Williams kernel [2] in the time–frequency plane. In Ref. [1], the SNR (signal-to-noise ratio) of the first-
order hyperbolic, Choi–Williams and nth-order hyperbolic kernels including the conditions for optimal SNR
were reported which form the foundation for the work on the hyperbolic kernel family reported here. Current
works on time–frequency kernels’ SNR are scarcely found in the literature, except the early works by Amin [3]
published in 1996 and Stankovic [4] in 1997, leading to works reported in Refs. [1,5]. The main difficulty with
research work on time–frequency kernels’ SNR is its mathematical complexity. However, kernel noise
robustness truly reflects their behaviour and characteristics under noisy conditions which are commonly
encountered in practice and should be considered as an important aspect in choosing kernels for various
signal-processing applications. Another indirect reason is that not many time–frequency kernels have been
proposed in the last decade with the last kernel, prior to the proposal of the hyperbolic kernel in 2003 [5], was
proposed by Costa [6] in 1995. Further, it is also widely believed that SNR is the key factor in determining the
effectiveness and performance of signal-processing tools.
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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The motivation for this work is of three-fold. First, even though the hyperbolic kernel was proposed in
Ref. [5] and studied in detail in Ref. [1], its numerical lower-bound on SNR was not available. Although the
upper-bound SNR [1] of the nth-order hyperbolic kernel has been successfully estimated, it is necessary to
estimate the lower-bound on SNR so that the robustness range of the kernel is clearly identified. Second, the
effectiveness of the first-order hyperbolic [1,5,7] kernel compared to the Choi–Williams kernel motivates more
work on higher-order hyperbolic family members so that their effectiveness and features are thoroughly
explored. Third, as reported in Refs. [5,7], there exists a relationship between time–frequency kernels and
wavelets which enables the generation of new wavelets from new kernels and vice versa. From the second point
above, by estimating kernels’ noise-robust range, i.e. lower-bound and upper-bound on SNR, it is possible to
establish a benchmark for various different time–frequency kernels and wavelets. By using such a benchmark,
a systematic comparison in terms of cross-term suppression, auto-term support and noise robustness of
various kernels can be made. From the wavelet point of view, it is also possible to classify various different
types of wavelet families based on their noise robustness. It is worthy to note that: (i) the lower bound on SNR
is more important than the upper bound as the lower bound represents the weakness of the kernel and
indicates the critical threshold which should not be crossed when employing the kernel for signal processing
applications, and (ii) from this paper perspective, the lower bound on SNR represents the maximum noise
level which can be tolerated by the kernel. Additional increase in the noise level would severely degrade the
kernel’s performance. By saying that, the lower bound on SNR is more useful than the upper bound. In this
paper, only real noise sources are considered.

The paper is organised as follows. Section 2 briefly gives the background on Cohen’s time–frequency power
spectra. Section 3 defines the general expression of an auto-term function and gives the mathematical
expression of the auto-term function of the nth-order hyperbolic kernel. Section 4 gives the background on the
hyperbolic kernel family and the conditions under which noise immunity is achieved. Section 5 presents the
main findings of the paper in which detailed analyses of the lower-bound on SNR are given. In addition,
detailed conditions governing the lower-bound on SNR are discussed. Section 6 summarises the findings of the
paper and outlines possible extensions.
2. Background on Cohen’s time–frequency distribution

Cohen’s time–frequency distributions are used to study non-stationary signals whose statistical properties
such as mean and variance vary with time. By using time–frequency distributions or time–frequency power
spectra, it is possible to study properties of multi-component signals as time and frequency vary. The general
form of Cohen’s time–frequency distribution is defined as [8,9]

Pðt;oÞ ¼
1

4p2

Z þ1
�1

Z þ1
�1

Z þ1
�1

e�jyt�jtoþjyuFðy; tÞRt;1ðt; tÞdudtdy, (1)

where F(y, t) is the kernel function which can be used to significantly shape the time–frequency distribution,
Rt;1ðt; tÞ ¼ xðuþ ðt=2ÞÞx�ðuþ ðt=2ÞÞ which is the auto-correlation function of the input analytic signal x(t),
u ¼ tþ ðt=2Þ, t the lag parameter, and t the running time variable. It is also clear from Eq. (1) that the
characteristics of P(t, o) are uniquely and significantly dependent on F(y, t). Eq. (1) can also be rewritten as

Pðt;oÞ ¼
1

4p2

Z þ1
�1

Z þ1
�1

Z þ1
�1

½e�jyðt�uÞFðy; tÞ�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
W ðt�u;tÞ

e�jtoRt;1ðt; tÞdudtdy. (2)

From Eq. (2), it is clear that the parameter (t–u) is used as a temporary frequency parameter in the Fourier
transform operation with respect to y to obtain the weighting function of F(y, t) as a function of (t–u) and t. It
is also clear that o is the operator used to generate the Fourier transform of F(y, t) with respect to t. In this
paper, to estimate the lower-bound SNR of the nth-order hyperbolic kernel, the condition o ¼ (t–u) is used as
carried out in Section 4.
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3. Auto-term function of the nth-order hyperbolic kernel

The nth-order hyperbolic kernel is given as

FHy_gðy; tÞ ¼ ½sechðbytÞ�n, (3)

where n is the order of the kernel, b the control parameter, y and t variables. It should be noted that the
hyperbolic kernel family has been shown as valid kernels for Cohen’s time–frequency distributions [5,7,10].

The auto-term function of a kernel is defined as [1,3,4]

Auto-term function ¼

Z þ1
�1

Fðy; tÞ
����
y¼�at

e�jot dt, (4)

where a is the auto-term slope. Because Eq. (1) is applicable for multi-component signals, so is Eq. (4). In
other words, Eq. (4): (i) can be considered as independent of the input signal and only dependent on the
time–frequency kernel, and (ii) truly reflects the kernel ability on supporting auto-terms. By substituting
y ¼ – at, the kernel becomes a one-dimensional function of t, i.e. the kernel energy can now be estimated
either in the time or frequency plane. Imagine a straight line going through the origin with a slope a. As a is
varied, so is the area under the curve. Thus, the auto-terms represent the signal energy as this straight line
sweeps through the first quarter of the plane, assuming a40. In other words, the auto-terms can be considered
as instantaneous signal energy which is proportional to the instantaneous frequency. By replacing F(y ,t) with
FHy_g(y, t) and letting y ¼ – at, the auto-term function of the nth-order hyperbolic kernel is obtained. The
auto-term function is used to study the location, distribution and magnitude of auto-terms of multiple non-
stationary signals in the time–frequency plane. For symmetrical kernels such as the hyperbolic and
Choi–Williams, the auto-term function can be approximately used as signal power to estimate the SNR [1]
because the area under the curve of the weighting functions of these kernels approximately approaches unity.
As a result, the SNR’s of the hyperbolic and Choi–Williams kernels are directly proportional to their auto-
term functions as clearly shown in Ref. [1]. The auto-term and weighting functions of the nth-order hyperbolic
kernel are given by (Ref. [1]) as

AUTOHy_g ¼

Z 1
�1

½sechðbat2Þ�ne�jot dt, (5)

W Hy_gðt; t� uÞ ¼ bp sech
pðt� uÞ

2bt

� �Yn

m¼1

m�
1

2

� �2

þ
t� u

2bt

� �2
" #( )

�
�n2 � 22n

ð2nÞ!
þ

22nþ1 � nðnþ 1Þ

ð2nþ 4Þ!
5þ 8nþ 4n2 þ

t� u

bt

� �2
" #( )

, (6)

where n ¼ 1, 3, 5, 7,y .
Subsequent changes in variables as can be seen in Eq. (1) make Cohen’s time–frequency power spectrum to

be a function of t and o which can be conveniently used for signal analyses. In this paper, the intermediate
form of the weighting function is used to form the relationship among (t–u), o and t. From that, it is possible
to work out the lower-bound on SNR of FHy_g(y, t).

4. Maximum theoretical SNR

It was shown in Ref. [1] that the area under the curve of the hyperbolic and Choi–Williams kernels is unity
which significantly simplifies their SNR expressions. However, to estimate the lower-bound SNR of the nth-
order hyperbolic kernel, the general expression of the weighting function should be used. For real noise
sources, the variance s2 of the time–frequency distribution is given as a function of the noise variance sx

2 as [4]

s2ðoÞ ¼ s4x
Xþ1
t¼�1

Xþ1
x¼�1

jW ðt;xÞj2, (7)
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where x ¼ t–u, yielding

s2ðoÞ
s4x
¼
Xþ1
t¼�1

Xþ1
x¼�1

jW ðt;xÞj2. (8)

Eq. (8) gives the distribution-to-noise ratio (DNR) which does not include the effects of auto-terms. To
consider these effects, the auto-term values are required. Using Eqs. (5) and (8), the SNR of the nth-order
hyperbolic kernel can be mathematically given as

SNRHy_g ¼
AUTOHy_gRþ1

�1

Rþ1
�1
½W Hy_gðt;xÞ�2 dxdt

, (9)

which can be maximised by forcing the weighting function (Eq. (6)) to be zero or by maximising the auto-term
function (Eq. (5)).

For analytic external noise sources, after some algebraic manipulations, the SNR of the nth-order
hyperbolic kernel is mathematically given as [4]

SNRAnalytic
Hy_g ¼

1

2p2
AUTOHy_gRþp

�p

R j2o�tj
�j2o�tj½W Hy_gðt;xÞ�2 dxdt

. (10)

It should be noted that the SNR for the case of analytic noise as given in Eq. (10) is of the same mathematical
form as of Eq. (9) but with different: (i) integration limits because jojop=2, and (ii) modification constant. At
the first glance, Eq. (10) appears to be 2p2 times smaller than Eq. (9) but because its integration limits are
narrower than those of Eq. (9), thus the value of Eq. (10) is not necessary smaller than that of Eq. (9). In fact,
they both can be identically employed as performance indicators as was shown in Ref. [4]. In this paper, only
real external noise sources are considered. Another point to note is that Eqs. (9) and (10) can be easily
extended for multi-component signals by taking the average SNR as given in Eqs. (11) and (12), respectively,
as

SNRHy_g ¼
1

N

XN

i¼1

SNRHy_gðiÞ (11)

and

SNRAnalytic
Hy_g ¼

1

N

XN

i¼1

SNRAnalytic
Hy_gðiÞ , (12)

where N is the number of individual signals in the composite multi-component signal.
From Eq. (7), it is also clear that another way to derive the SNR is to determine the formula of the noise

variance in terms of the distribution variance and weighting function, which is given as

s4x ¼
s2ðoÞPþ1

t¼�1

Pþ1
x¼�1jW ðt;xÞj

2
. (13)

The SNR is then given as

SNR ¼
AUTO

s4x
¼

AUTO

s2ðoÞ

� � Xþ1
t¼�1

Xþ1
x¼�1

jW ðt;xÞj2, (14)

which is also a useful formula for the SNR. Eqs. (11) and (12) can be employed to further extend Eq. (14) for
multi-component signals. However, because of: (i) its independence of the input signals, (ii) its only
dependence on the time–frequency kernel, and (iii) easy of computation, only Eq. (9) is considered in this
paper.

From Eq. (6), to obtain the optimal SNR for the kernel, the relationship between (t–u) and t as a function of
b and n is given by [1]

t� u ¼ bt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n4 þ 32n3 þ 34n2 þ 4n� 5

p
; where n ¼ 1; 3; 5; 7; . . . , (15)
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Fig. 1. Graphical representation of normalized (t–u) (Eq. (15)) against t and 0ono50 with b ¼ 1, yielding a theoretical SNR of infinity.
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which is plotted in Fig. 1. It should also be noted that under the condition imposed by Eq. (15), the SNR
attains its maximum theoretical value of infinity, i.e. yielding complete noise immunity to the kernel, and is
independent of the auto-term slope a. It is also clear that from Eq. (6), the lower-bound and upper-bound on
SNR’s are strongly dependent on the area under the squared weighting function because the area under the
auto-term function is usually much smaller as will be seen later. Mathematically, Eq. (5) can be rewritten in
terms of sin and cos functions as

AUTOHy_g ¼ 2

Z þ1
0

f½sechðbat2Þ�n cosðotÞ � j½sechðbat2Þ�n sinðotÞgdt, (16)

in which the second term does not contribute to the integral in Eq. (16) because sech and sin are even and odd
functions, respectively, yielding their product an odd function. Thus, Eq. (16) can then be rewritten as

AUTOHy_g ¼ 2

Z þ1
0

½sechðbat2Þ�n cosðotÞdt, (17)

which means that the Fourier transform of [sech(abt2)]n is real.

5. Lower-bound on SNR

The lower-bound on SNR of the nth-order hyperbolic kernel can be obtained by using a change of variable
from o to (t–u) as explained earlier. By using Eq. (15) under the optimal SNR condition and replacing o with
(t–u) for modification and simplification purposes, the auto-term function can be rewritten in terms of t, b, a

and n as

AUTOHy_g ¼ 2

Z þ1
0

½sechðabt2Þ�n cosðbt2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n4 þ 34n3 þ 32n2 þ 4n� 5

p
Þdt. (18)

By using k ¼ (t–u)/t, Eq. (6) can be rewritten as

W Hy_gðkÞ ¼ bp sech
pk

2b

� �Yn

m¼1

m�
1

2

� �2

þ
k

2b

� �2
" #( )

22nþ1nðnþ 1Þ

ð2nþ 4Þ!

k

b

� �2

þ 5þ 8nþ 4n2

" #
�

n222n

ð2nÞ!

( )
,

(19)

Hence Eq. (9) can be rewritten as

SNRHy_g ¼
AUTOHy_g

2
Rþ1
0 ½W Hy_gðkÞ�

2 dk
. (20)



ARTICLE IN PRESS
K.N. Le / Journal of Sound and Vibration 321 (2009) 405–415410
To determine the lower-bound on SNR, the condition of attaining a local maximum in [WHy_g(k)]
2 is

required, which is the root of

d½W 2
Hy_gðkÞ�=dk ¼ 0, (21)

yielding the largest root given by

k ¼
t� u

t
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:37þ 1:2nþ n2

p
. (22)

It should be noted that in obtaining Eq. (22), it is assumed that the roots of Eq. (21) are large [11] which also
means that Eq. (22) is linear in terms of n. It is evident that Eq. (22) yields a linear relationship between k and n

for the worst condition, under which the kernel’s squared weighting function attains its maximum, as
compared to the quadratic relationship between k and n given in Eq. (6) in which the weighting function
attains its minimum value of zero. Eq. (22) is then substituted into Eq. (19) yielding the maximum squared
weighting function. After that, Eq. (20) is used to estimate numerical values of the lower-bound on SNR as a
function of a. It should be noted that the magnitude of the auto-term function is independent of the maximum
value of the weighting function, but strongly dependent on the auto-term slope a as will be seen later.

By using the condition given in Eq. (22), the auto-term function can be estimated as

AUTOHy_g ¼ 2

Z þ1
0

½sechðabt2Þ�n cosðbt2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1:2nþ 0:37

p
Þdt, (23)

and plotted in Fig. 2 for a ¼ 1, from which it is evident that the auto-term function attains a larger magnitude,
thus yielding a larger lower-bound on SNR than its theoretical value. However, since the theoretical value of
the SNR cannot be obtained, a ‘‘soft’’ lower-bound on SNR may be considered to be satisfactory in this case.
The lower-bound on SNR can be obtained by taking the ratio of the area under the curve of the auto-term
function and the area under the curve of the squared weighting function [WHy_g(k)]

2. It should be noted that
the maximum value of [WHy_g(k)]

2 is independent of a (Fig. 3).
Simulation results show that the general shape of the kernel’s squared weighting function is strongly

dependent on b and less dependent on n as its value rapidly decreases to zero as b increases. Therefore, to
reduce mathematical complexity, it is sensible to assign a large value to b so that the denominator of Eq. (9) is
only dependent on n. Thus, Eq. (9) can be rewritten as

SNRHy_g ¼
AUTOHy_gRþ1

0 2½W Hy_gðk; nÞ�
2 dk

. (24)
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Fig. 2. Normalised auto-term function with a ¼ 1 under the optimal condition imposed by Eq. (15). The auto-term function’s shape

remains largely unchanged for other values of a.
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Fig. 3. Plotting of normalized k (Eq. (22)) as a function of t and n with b ¼ 1.

Fig. 4. Lower-bound on SNR in dB as a function of a and n under the conditions imposed by Eq. (22) and with b ¼ 1. The lower-bound

on SNR swings between �58 and �61.5 dB.
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By substituting Eq. (22) into Eq. (19), the approximate numerical constant value of 1,769,877 with b ¼ 100
for the area under the curve of the function [WHy_g(k)]

2 is obtained, which is independent of the auto-term
slope a. The lower-bound on SNR is then estimated by taking the ratio of the numerical value of AUTOHy_g,
given by Eq. (23), and 1,769,877. The lower-bound on SNR as a function of a and n with b ¼ 1 is plotted in
Fig. 4, from which it decreases as n increases. For other values of b, the lower-bound on SNR resembles the
shape of the bound in Fig. 4, but has a different magnitude. Fig. 5 plots the lower-bound on SNR as a function
of b with a ¼ 3, from which a linear relationship between the parameters is observed.

From Fig. 4, by fixing b, the lower-bound on SNR significantly decreases with the order n, with the peak
located at aE3. It should also be noted that fixing b and plotting the lower-bound on SNR with a and n is not
useful since the kernel family becomes severely less noise robust as n increases. From Fig. 5, the relationship
between the lower-bound on SNR and b is linear in log–log scales which suggests that their transfer function
could be modelled as a sum of exponentials. From simulation results, by fixing a, the lower-bound on SNR
remains almost constant as n increases. However, it rapidly decreases with b. Under this condition, the lower-
bound on SNR is more stable than fixing b as displayed in Fig. 4. Thus, it is appropriate and advantageous to
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Fig. 5. Linear relationship in log–log scales between the lower-bound on SNR and b under the conditions imposed by Eq. (22) with a ¼ 3,

corresponding to the peak of the lower-bound on SNR as shown in Fig. 4.
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fix a and examining the lower-bound on SNR in terms b and n. It should also be stressed that n should not be
fixed as that would limit the degree of freedom in exploring the characteristics of kernel members.

Even though the main focus of this paper is to estimate the lower-bound on SNR of the nth-order
hyperbolic kernel, it is worth to preliminarily examine the relationship between a and the lower-bound on
SNR, i.e. a relation between a and the SNR at a particular value of n, which helps forming the foundation for
future research directions on the kernel family. This can be achieved by fixing a and plotting the lower-bound
on SNR as a function of b and n. For other values of the auto-term slope a, the shape (but not its magnitude)
of the auto-term function and SNR under the condition imposed by Eq. (22) remain unchanged.

Table 1 summarises the measured lower-bound on SNR of the nth-order hyperbolic kernel as a function
of a.

To relate a and the lower-bound on SNR, a transfer function is required which can be obtained by applying
a simple polynomial curve fitting method provided in MATLAB to the given data in Table 1.

Fig. 6 plots the lower-bound on SNR as a function of a under the condition imposed by Eq. (22) and an
approximate fifth-order polynomial transfer function. The approximate curve fitting can be significantly
improved by increasing the order of the polynomial to 20 as shown in Fig. 7. As can be seen in Fig. 6, the
lower-bound on SNR decreases as a increases which is consistent with the results reported in Refs. [1,5,7,10].

Mathematically, the transfer functions relating the lower-bound on SNR to a by using the fifth- and 20th-
order polynomial curve fitting methods are given by Eqs. (25) and (26) as

H5th ¼ 0:0003a3 � 0:0112a2 þ 0:0439a� 66:5712, (25)

and

H20th ¼ 0:0004a7 � 0:0093a6 þ 0:0878a5 � 0:4581a4 þ 1:2315a3 � 1:3108a2 þ 0:7745a� 66:7427. (26)

Eqs. (25) and (26) give simple mathematical models of the transfer function of a system relating the auto-
term slope a as the input to the lower-bound on SNR as the output. It is also clear that the 20th-order
polynomial fitting to the given data yields a more accurate fitting than the fifth-order polynomial method. In
addition, for orders larger than twenty, the method does not give more accurate fitting results. At this point,
one may ask whether the system is linear time invariant (LTIV) so that control- and circuit-theory tools can be
directly applied to it. It should be stressed that the main focus of this paper is to estimate the lower-bound on
SNR as a function of a and b, and thus, the discussion on modelling of the transfer function relating the two
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Table 1

Measured lower-bound on SNR in dB as a function of a

a SNR (dB) a SNR (dB) a SNR (dB)

0 –66.6793 12 –67.1646 26 –68.6773

0.1 –66.6759 12.5 –67.1903 28 –68.9576

0.2 –66.6248 13 –67.229 29 –68.9576

0.3 –66.5911 14 –67.4009 30 –69.0159

0.4 –66.5688 15 –67.5379 35 –69.3619

0.5 –66.5688 16 –67.6364 40 –69.6873

0.6 –66.5699 17 –67.8108 45 –69.9219

0.7 –66.5135 18 –67.931 50 –70.099

0.8 –66.4697 19 –68.1337 60 –70.4929

0.9 –66.4588 19.5 –68.0861 70 –70.8958

1 –66.4372 20 –68.1337 80 –71.1122

10 –66.7045 22 –68.414 90 –71.3735

11 –66.9044 24 –68.5878

10-1 100 101 102
-72

-71

-70

-69

-68

-67

-66
Fifth-order polynomial fit of the lower-bound on SNR

Auto-term slope a

5th-order polynomial fit

Real data

dB

Fig. 6. Fifth-order polynomial fit of the lower-bound on SNR as a function of a on log–log scales under the condition imposed by

Eq. (22).
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parameters should be temporarily stopped here. More work is currently in progress to thoroughly investigate
this relationship and will be reported in a separate publication.

To assess the effectiveness of the hyperbolic and Choi–Williams kernels, other recent kernels are considered.
The mathematical forms of some recent kernels are given as follows:

Born-Jordan : FBJðy; tÞ ¼
sinðyt=2Þ
yt=2

, (27)

Sinc : FSðy; tÞ ¼ rectðyt=aÞ, (28)

Butterworth : FBWðy; tÞ ¼
1

1þ ðyt=y0t0Þ
4
, (29)

where a, y0t0 are kernel parameters.
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Fig. 7. Twentieth-order polynomial fit of the lower-bound on SNR on log–log scales under the condition imposed by Eq. (22). The fitting

is much more accurate than the fifth-order fitting plotted in Fig. 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω [rad/s]

A
ut

o-
te

rm
 v

al
ue

Auto-terms of various time-frequency kernels

Hyperbolic
Choi-Williams
Born-Jordan
Butterworth
Sinc

Fig. 8. Auto-terms of hyperbolic, Choi–Williams, Born-Jordan, Butterworth and Sinc time–frequency kernels as functions of o.

K.N. Le / Journal of Sound and Vibration 321 (2009) 405–415414
For completeness, noise variance comparisons for the real-noise case of the Born-Jordan, Sinc, hyperbolic,
Choi–Williams and Butterworth time–frequency kernels are plotted against the frequency o (rad/s) in Fig. 8
from which it is clear that the hyperbolic kernel is comparable with the optimal Born-Jordan kernel and is
better than the Choi–Williams, Butterworth and Sinc kernels.

6. Conclusions and further work

The lower-bound on SNR of the nth-order hyperbolic kernel has been shown to be in the approximate
ranges of �71 to �66 dB for 0pap100, and of �61 to �58 dB for 0pbp70, with 1pnp10. For n410, the
lower-bound on SNR rapidly decreases which suggests that very high-order hyperbolic kernels are not useful.
It has been found that the transfer function describing the relationship between the lower-bound on SNR and
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the auto-term slope a can be accurately modelled as a seventh-order polynomial by using a 20th-order
polynomial fitting method in MATLAB. The transfer function of the lower-bound on SNR and b is a linear
function in log–log scales. The function may also be approximately considered as a maximally flat low-pass
filter response so that further simplification can be carried out to approximate the hyperbolic kernel family
with the Butterworth filter family. The main reason why Butterworth filter family is appropriate in this case is
because of the flat pass-band of the transfer function for 0pap10, and its slow roll-off.

It has been found that by examining the lower-bound on SNR as a function of b and n, with a fixed a, the
kernel is more noise robust than in the case of fixing b and examining the system as a function of a and n, even
though the latter is more performance effective with a higher lower-bound on SNR than the former. The main
advantage of the former method is that it makes the kernel family more noise robust as the order n increases.
In general, as a further increases, the kernel’s SNR decreases which is consistent with findings reported in
Ref. [5]. At n ¼ 7, the squared weighting function attains its peak, yielding the largest kernel noise variance,
and hence the lowest lower-bound on SNR. For aX10, the lower-bound on SNR sharply decreases.

Further work is currently in progress, focusing on the following four major research directions:
�
 Modelling of the transfer function relating the lower-bound on SNR to auto-term slope a and to b, in which
more thorough investigations using Pade’s method and other possible methods are carried out to obtain its
pole(s) and zero(s).

�
 Amplitude modulation of the hyperbolic pulse in noisy conditions because the Fourier transform of a

Gaussian-like sech pulse is real.

�
 Approximation of the hyperbolic kernel family by Butterworth filter family due to the near-flat pass band

of the former. Comparisons of the two families are made.

�
 Detailed investigations on individual members of the hyperbolic kernel family based on a performance

benchmark of estimating their noise-robustness ranges. Performance comparisons can then be made.

It should be stressed that some of the above-mentioned research directions can be applied to other different
kernels, thus yielding a systematic and convenient comparison of various kernels along with their
performances.
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